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Ultimately, I seek to understand “how we can build
machines that can learn to generalize in the real world
from past observations”. Achieving this goal requires
inference and learning not only on data points, but also
over probability distributions that generate them. To
this end, I have worked extensively on a kernel mean
embedding (KME) of distributions which offers power-
ful mathematical tools to work with distributions. In
particular, it provides a succinct representation of an
interventional distribution which is instrumental for
causal reasoning. Understanding of cause-effect rela-
tionships enables machines to generalize better in the
real world and is a prerequisite for consequential de-
cision making in health care, education, public policy,
and justice system. In these areas, collecting experi-
mental data can be expensive, time-consuming, or even
unethical, so most algorithmic decisions are made on
the basis of non-experimental data alone. As a result,
a reliable algorithmic decision remains unattainable.
Finally, the omnipresence of data-driven systems and
scarcity of resources in socioeconomic systems call for
an oversight that will ensure long-term sustainability.

My research aims to combine ideas from machine
learning with those from economics such as game the-
ory and mechanism design. The complementary nature
of tools from these two mostly disjoint fields will
allow me to address the aforementioned challenges.
In Section I, I will discuss my scientific achievement
followed by vision for future research in Section II. A
bird’s-eye view of my research is given in Fig. 1.

I. Scientific Achievements

My research endeavour has led to several scientific
contributions at the flagship conferences and journals
in machine learning (JMLR [1–5], FnT ML [6], NeurIPS
[7–12], ICML [13–18], UAI [19–21], and AISTATS [22,
23]) as well as other disciplines (CVPR [24], 3DV [25,
best paper award], Physical Review Research [26], and
Journal of Nonlinear Science [27] among others). In
Section I-A and I-B, I describe my research that lie on
the “prediction–causation” spectrum in Fig. 1.

A. Distributional Prediction with Kernels

To deal with probability distributions, I have worked
extensively on a kernel mean embedding (KME) of
distributions [28, 29] and have published a highly-cited
book entitled “Kernel Mean Embedding of Distribu-
tions: A Review and Beyond” [6]. The idea of KME
is to represent a distribution P (X) over some random
variable X as a function in a high-dimensional feature
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Fig. 1: Prediction-Causation-Regulation (PCR) re-
search agenda. (P) A predictive modeling requires an
accurate estimate of the underlying probability dis-
tribution. (C) The interventional distribution informs
the consequences of algorithmic decisions in the real
world. (R) Due to the scarcity, these decisions, espe-
cially personalized ones, may introduce incentives for
individuals to change their behaviour. This in turn
creates a feedback loop in the data collection process.

space known as a reproducing kernel Hilbert space
(RKHS), i.e., P 7→ µP := EP [k(X, ·)] for some positive
definite kernel k. It provides a complete representation
of distributions, and by means of the KME, one can
compare two distributions as well as perform basic
operations such as sum rule, product rule, and Bayes
rule. Furthermore, owing to kernel function k, one
can work with distributions over non-standard data
structures such as strings, graphs, and groups in an
integrated framework. The key advantage of KME is
that it can be estimated consistently using an em-
pirical average over the i.i.d. sample x1, . . . ,xn with-
out any parametric assumptions on P (X), i.e., µ̂P :=
(1/n)

∑n
i=1 k(xi , ·), making it less susceptible to model

mis-specification. In [3], my colleagues and I showed
that this estimator is minimax optimal. Surprisingly,
in another line of research we showed that the kernel
mean estimation can still be improved in practice
thanks to the Stein’s shrinkage phenomenon [2, 8, 15].
That is, shrinkage estimators of the KME outperform
the standard one µ̂P even when we have no further
information about P (X). We proposed a family of
estimators called kernel mean shrinkage estimators
(KMSE) equipped with an efficient cross validation
procedure to select an optimal shrinkage parameter. In
[12], my colleagues and I overcame the long-standing
limitations of the conditional mean embedding (CME)–
the KME of the conditional distribution P (Y |X)–via an
alternative operator-free definition based on a measure-
theoretic perspective, i.e., we define the embedding of
P (Y |X) as an X-measurable random variable taking
values in the RKHS. This novel definition eases theo-
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retical analyses associated with the CME, allows us to
naturally extend maximum mean discrepancy (MMD)
and Hilbert-Schmidt Independent Criterion (HSIC) to
the conditional setting, which we call the maximum
conditional mean discrepancy (MCMD) and the Hilbert-
Schmidt conditional independence criterion (HSCIC), and
also inspires future applications. My works in this
area have led to some fundamental results as well
as numerous collaborations in deep learning [11, 24],
causality [1, 16, 18, 30], molecular dynamic [27], dy-
namical systems [31], quantum computing [26], and
econometrics [9, 21, 32].

I was also involved in the pioneering development
of learning algorithms that operate on a collection of
distributions. For instance, I developed a framework
called distributional risk minimization (DRM) that
extends the conventional empirical risk minimization
(ERM) to a space of distributions [7, 19] and proved
a result that generalizes the well-known representer
theorem [33] to a space of distributions [7, Theorem
1]. Based on this framework, I proposed learning algo-
rithms on distributions called support measure machine
(SMM) and one-class support measure machine (OCSMM)
[7, 19] which generalize the support vector machine
(SVM) algorithm with extended kernel functions on
probability distributions. Learning directly on distri-
butions allows us to better capture the uncertainty and
to reason about the aggregate behaviors that arise from
multiple collections of data.

My work [13] also laid the foundation for subsequent
works in the area of out-of-distribution (OOD) gener-
alization. In [13], my colleagues and I studied the do-
main generalization (DG) problem [34]: Given data sets
from multiple domains, learn a predictor that generalizes
well to any previously unseen domains.1 Our work was
the first to advocate that learning a domain-invariant
representation leads to improved out-of-distribution
generalization, which was justified theoretically by our
learning-theoretic analysis [13, Theorem 5]. To allow
for better generalization, my intern and I recently
combined this idea with deep neural network and
applied it to a few-shot learning problem [11]. A novel
task representation called model-aware task embedding
(MATE) incorporates not only the data distributions of
different tasks, but also the complexity of these tasks.
Since the OOD generalization also bears a resemblance
to the social welfare in economics, I am now exploring
ideas to solve it from this perspective.

B. Causation and Decision Making
More recently, my research focuses on a synergy

between machine learning and economics [1, 9, 18,
21, 32]. I am developing algorithms that help solve
problems in economics, while bringing the economic
perspective into the design of new learning algorithms.

1This problem was first studied in [34], but the term “domain
generalization (DG)” was coined for the first time in our paper [13].

While machine learning embraces the potential of pow-
erful predictive models, economics addresses substan-
tive questions in education, public policy, and social
programs. The interface between these two fields will
thus reveal the challenges of deploying machine learn-
ing in the real world. The nonparametric nature of
KME also makes it ideal for economic applications
where a distributional assumption is undesirable.

Distributional effects: In econometrics, a prime
objective is to predict the effect of a policy intervention
or a counterfactual change in economic conditions on
some outcome variables. That is, we are concerned
with an interventional distribution P (Y |do(X)) which
describes how the distribution of Y would change (or
would have changed) as a result of an intervention on
X. The policy intervention generally aims to under-
stand non-trivial effect of change in distribution P (X).
However, most of existing works in the literature focus
on mean effects such as average treatment effect (ATE)
and conditional average treatment effect (CATE), which
do not inform changes in higher-order moments. To
overcome this limitation, my colleagues and I proposed
a counterfactual mean embedding (CME) [1] as a Hilbert
space representation of the counterfactual distribution
that represents the outcome of hypothetical change
which by definition is not observable. Thanks to
our estimators, the CME can be estimated consistently
from observable quantities. One of the important ap-
plications of our work is offline policy evaluation [1,
Section 6], which is relevant to a program evaluation
in economics. In [17], my colleagues and I extended
this idea and proposed the conditional distributional
treatment effect (CoDiTE), which, in contrast to the more
common CATE, is designed to encode a treatment’s dis-
tributional aspects and heterogeneity beyond the mean.
We applied CoDiTE to LaLonde’s well-known National
Supported Work (NSW) dataset [35] to model the wage
distribution. Since wage distributions are known to be
skewed, CoDiTE can capture the treatment effect better
than CATE [17, Sec. 6.2]. Our works [1, 17] are at
the forefront of distributional treatment effect (DTE)
estimation with machine learning algorithms.

Instrumental variable (IV): A major obstacle
faced by policymakers and decision makers is the
presence of unobserved confounders. It jeopardizes the
reliability of the decisions and policies. An instrumen-
tal variable (IV) is a signature method in econometrics
to overcome the endogeneity in data. A nonparametric
instrumental variable (NPIV) regression solves a Fred-
holm integral equation which is an ill-posed inverse
problem. Recent approaches in machine learning can
be categorized either as a two-stage approach [36, 37]
or GMM-based approach [38, 39]. In [9], I showed
that the NPIV can be reformulated as a two-player
game based on a convex-concave utility function.
This reformulation, which is called DualIV, offers much
simpler algorithms. In particular, when both players
are parameterized by the RKHS functions, the global



equilibrium can be obtained in closed-form [9, Sec.
4]. This work also sheds light on the duality between
the two-stage and GMM-based approaches, as later
pointed out in [40, Appendix F] and our work [18, Sec.
3.3]. Lastly, I find the DualIV fascinating as it eluci-
dates the kind of problems for which a game-theoretic
perspective as a search for Nash equilibrium can lead
to simpler algorithms than the standard algorithms.

Maximum moment restriction (MMR): Like many
problems in econometrics, the NPIV can also be solved
via a so-called conditional moment restriction (CMR):
for correctly specified models, the conditional mean of
certain functions of data is almost surely equal to zero [41,
42]. The major challenge when working with the CMR
is that it implies an infinite number of unconditional
moment restriction (UMR) which make the correspond-
ing inference and estimation intractable. Based on the
vector-valued RKHS (vv-RKHS), my colleagues and I
proposed a maximum moment restriction (MMR) [21]
by transforming the original CMR to a maximum of the
interaction between the generalized residual function
and functions of the conditioning variables that belong
to a unit ball of the vv-RKHS. Surprisingly, the MMR
not only provide a tractable form for inference and
estimation, but also captures all necessary infor-
mation about the original CMR. In other words, no
information is lost by the restriction to the RKHS. This
work opens up new research avenues that lie at the
intersection between econometrics and modern kernels
methods in machine learning. In particular, my col-
leagues and I have applied this framework successfully
to the problems of conditional moment (CM) test [21],
IV regression [32], and proximal causal learning [18].

II. Vision for Future Research

As I described in Section I-B, modern kernel meth-
ods and kernel mean embedding are natural tools for
tackling several problems in economics. To go even
further, my vision for future research lies in the
challenges that arise from interactions between ma-
chine learning systems and real-world environments,
especially socioeconomic systems. To create models
that can learn to generalize in the real world, it is
imperative to incorporate information about the data
collection process, effects of the deployment in complex
environments, and human behaviour into the design of
learning algorithms. In my opinion, an incorporation of
economic thinking will be a game changer for machine
learning in dealing with critical challenges such as
feedback loop, market equilibrium, non-stationarity,
heterogeneity, delayed effect, endogeneity, and strategic
response, which fall into the “regulation” spectrum in
Fig. 1. I discuss a couple of important challenges below.

Feedback loop: The deployment can create a feed-
back loop in the data collection process (see Fig. 1).
That is, the historical data are used in building the
models which are in turn deployed to collect more
data. In loan decisions, for example, a bank may decide
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Fig. 2: Learning as a robust mechanism design: When
data come from self-interest agents (individuals, in-
stitutions, or even countries) that can anticipate the
outcome of data-driven models, the deployment of
static models can be sub-optimal. In this setting, the
problem is akin to designing a game to be played by
the data against the model.

whether or not to offer a loan based on learned models
of the credit default. These decisions generate more
data that are used to improve the models. In [23],
my colleagues and I analyzed consequential decision
making using imperfect predictive models, which are
learned from data gathered by potentially biased his-
torical decisions. We articulated that when starting
with a non-optimal deterministic policy, this approach
fails to optimize utility for sequential decisions. To
avoid this failure mode while respecting a common
fairness constraint, we suggest to directly learn the
decisions with exploring policies. The results of this
work highlight the need of regulation that governs the
design and applications of predictive models in the real
world. One of the questions I am exploring is how to
overcome this challenge by leveraging the idea of IV
described in Section I-B.

Learning as a robust mechanism design: The de-
ployment may also introduce incentives for individuals
to change their behaviour. Hence, the models become
sub-optimal when observed data are manipulable, e.g.,
in heterogeneous pricing, individualized credit offer,
and target social program, as illustrated in Fig. 2. When
the data are subject to manipulation, we must design a
mechanism with which the models will be governed to
reach a desirable long-term social welfare, for example,
by eliciting the right incentives for people [43]. This
question leads to a growing interest in strategic classifi-
cation [44–46] and performative prediction [47] among
others. Compared to immediate impacts of machine
learning such as unfairness and algorithmic biases,
long-term impacts are often neglected as they can be
difficult to foresee. Thus, human behaviour must be
carefully taken into account when building machine
learning systems that will become part of the society.
To address this challenge, the key question is how to
design learning algorithms that produce the incentive-
compatible models, i.e., the data provided are truthful.
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