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Abstract— In this note, I summarize my research across
the “prediction-causation-regulation” spectrum in machine
learning and illustrate my vision for future research.
Recent breakthroughs in algorithmic predictions have
not only led to widespread use of predictive models in
critical domains, but also expedited scientific discoveries.
Nevertheless, important problems in machine learning,
statistics, and economics, require inferences and learning
over entire probability distributions. To this end, I have
worked extensively on a kernel mean embedding (KME)
of distributions which offers powerful mathematical tools
to accomplish these tasks. In particular, the framework
also provides a succinct representation of an interven-
tional distribution which is the key ingredient in causal
reasoning and decision making. However, an algorithmic
decision remains unattainable as it demands additional
knowledge that can only be acquired from real-world
experiments. As collecting experimental data can typically
be expensive, time-consuming, or even unethical, most
algorithmic decisions are made on the basis of non-
experimental data alone. To improve the reliability of these
decisions, I am working on projects that address impor-
tant challenges such as endogeneity and heterogeneity by
combining ideas from machine learning and econometrics.
Finally, the omnipresence of the data-driven systems and
scarcity of resources in socioeconomic systems call for
proper mechanism and oversight which will ensure long-
term sustainability. This challenge has drawn my attention
towards the applicability of concepts in game theory and
mechanism design to machine learning and vice versa.

I. Distributional Prediction

An algorithmic prediction relies on a good esti-
mate of the conditional mean E[Y |X = x]. Many ma-
chine learning (ML) algorithms have been proposed for
this task including k-nearest neighbor (KNN), support
vector machine (SVM), ensemble methods, and deep
learning (DL) [1–3]. However, important problems in
machine learning and statistics such as two-sample
testing, causal inference, and transfer learning involve
inferences over entire probability distributions.

A. Kernel Mean Embedding of Distributions

I have worked extensively on a kernel mean embed-
ding (KME) of distributions [4, 5] and have published
a highly-cited book entitled “Kernel Mean Embedding
of Distributions: A Review and Beyond” [6]. The idea
is to represent a distribution P (X) over some random
variable X ∈ X as a function in a high-dimensional
feature space known as a reproducing kernel Hilbert
space (RKHS) H with a kernel k : X ×X →R. Formally,
the embedding of P (X) is defined by µP := EX [k(X, ·)]
where X ∼ P (X). If k is bounded, i.e., supx∈X

√
k(x,x) <

∞, then µP is well-defined as a function in H (see

Regulation

ML

ML

CausationPrediction

DecisionData

Distribution

Fig. 1: My Prediction-Causation-Regulation (PCR)
research agenda. (P) A good predictive modeling re-
quires an accurate estimate of the underlying proba-
bility distribution. (C) The interventional distribution
informs the consequences of algorithmic decisions in
the real world. (R) Due to the scarcity, these decisions,
especially personalized ones, may introduce incentives
for individuals to change their behaviour. This in turn
creates a feedback loop in the data collection process.

Fig. 2 for an illustration). The KME has two impor-
tant properties. First, there exists a class of kernels k,
known as characteristic kernels, for which µP captures
all information about P , i.e., for distributions P and
Q, µP = µQ if and only if P = Q [7, 8]. Examples of
characteristic kernels on R

d include Gaussian RBF ker-
nel k(x,x′) = exp(−‖x − x′‖22/2σ2) and Laplacian kernel
k(x,x′) = exp(−‖x−x′‖1/σ ) with a bandwidth parameter
σ > 0. Second, it follows from the reproducing property1

of H that EX [f (X)] = EX [〈f ,k(x, ·)〉H ] = 〈f ,µP 〉H for
any f ∈H [5]. That is, µP provides not only a complete
representation of P (X), but also basic operations on
P (X). For example, it allows us to compare distribu-
tions using a so-called maximum mean discrepancy
(MMD) [9, 10], i.e., MMD(P ,Q,H ) := ‖µP −µQ‖H . With
this framework, my colleagues and I have contributed
in areas such as hypothesis testing [11–13], causality
[14–18], and deep learning [19, 20] among others.

Given an i.i.d. sample x1, . . . ,xn from P (X), µP can
be approximated by an empirical kernel mean µ̂P :=
(1/n)

∑n
i=1 k(xi , ·), which was shown to converges to µP

1For any f ∈H and x ∈ X , f (x) = 〈f ,k(x, ·)〉H .
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at the rate of OP (1/
√
n) as n goes to infinity [5, 15, 21,

22]. Importantly, this result holds without any distribu-
tional assumption on P , which makes this framework
ideal for applications in economics where such an
assumption is undesirable. In [22], my colleagues and
I showed that this rate of convergence is minimax
optimal in ‖ · ‖H and ‖ · ‖L2(Rd )-norms over the class
of discrete measures and the class of measures that
have an infinitely differentiable density, with k being a
continuous translation-invariant kernel on R

d . Surpris-
ingly, my colleagues and I showed that the kernel mean
estimation can still be improved in practice thanks to
the well-known Stein phenomenon [23]. In [24, 25], we
proposed a family of estimators called kernel mean
shrinkage estimators (KMSE): µ̂α = αf ∗ + (1−α)µ̂P for
an arbitrary data-independent f ∗ ∈H and a shrinkage
parameter α ∈ (0,1). I developed an efficient leave-
one-out cross validation procedure to select an optimal
value of α that attains the right bias-variance tradeoff.
In [26], I further developed a non-linear extension of µ̂α
based on spectral filtering algorithms [27]. Our KMSE
have been shown to improve the estimation of (cross-
) covariance operators and tensors of higher order in
RKHS as demonstrated in [28] for increasing the power
of kernel independence test.

The KME has been generalized to represent a condi-
tional distribution P (Y |X). Let Y be another random
variable taking values in a measurable space Y . A
conditional mean embedding (CME) of P (Y |X = x) for
some x ∈ X can be defined in a similar way as µY |x :=
EY |x[`(Y , ·)] ∈F where ` : Y ×Y → R is a reproducing
kernel on Y with the RKHS F [29]. Under the assump-
tion that EY |X [g(Y ) |X = ·] ∈ H , it was shown in [29]
that there exists an operator UY |X : H →F for which
the following two essential properties associated with
P (Y |X) hold: (i) µY |x = UY |Xk(x, ·). (ii) EY |x[g(Y ) |X =
x] = 〈g,µY |x〉F for all g ∈ F . This conditional mean
operator (CMO) can be expressed in terms of covari-
ance operators CYX and CXX as UY |X = CYXC−1

XX [7, 29].2

Given a joint sample (x1, y1), . . . , (xn, yn) from P (X,Y ),
the empirical estimate of µY |x is µ̂Y |x =

∑n
i=1αi`(yi , ·)

where α := (K + nλI)−1kx ∈ R
n with Kij := k(xi ,xj )

and kx := (k(x1,x), . . . , k(xn,x))>. In [29, Theorem 6], the
rate of convergence OP ((nλ)−1/2 +λ1/2) was established,
suggesting that the CME is harder to estimate than
the KME. Under the condition that the eigenvalues
(γm)∞m=1 of CXX decay as γm ≤ βm−b for some β > 0, the
rate of OP (n−b/(4b+1)) was established in [30]. Combined
with KME, the CME allows us to perform important
operations such as sum rule, product rule, and Bayes
rule by means of the RKHS embeddings which are basic
building blocks for probabilistic inference [30–33]. For
example, my colleagues and I proposed in [34] a novel

2A covariance operator CYX : H → F is a unique bounded
operator satisfying 〈g,CYXf 〉F = Cov[g(Y ), f (X)] for all f ∈H , g ∈F
[6, Sec. 3.2].

conditional density estimation model termed the con-
ditional density operator (CDO) that is competitive
with recent neural conditional density models and
Gaussian processes.

The prevalent definition of CME relies on two strin-
gent assumptions that hinder the theoretical analyses,
namely, that C−1

XX exists and that EY |X [g(Y ) |X = x],
as a function in x, lives in H . In [35], my col-
leagues and I overcame these long-standing limitations
via an alternative operator-free definition based on
a measure-theoretic perspective, i.e., we define µY |X
as a X-measurable random variable taking values
in F . As natural by-products, we extended MMD
and HSIC to the conditional setting, which we call
the maximum conditional mean discrepancy (MCMD)
and the Hilbert-Schmidt conditional independence cri-
terion (HSCIC). This novel definition not only eases
theoretical analyses associated with the CME, but also
inspires its future applications.

B. Distributional Learning and Generalization
The idea described in Section I-A enables learning

at the level of probability distributions [36–41]. This
allows us to reason about the aggregate behaviours
that could arise from a collection of data which might
represent individuals, institutions, or even countries
(see the middle of Fig. 2). To this end, let P be a
space of probability distributions and M a probabil-
ity distribution over P called a meta-distribution,
i.e., a distribution over distributions. In supervised
learning on distributional data, we are interested in
learning a function F : P → Y from the labeled sam-
ple (P1, y1), . . . , (Pn, yn) ∼ M (P ,Y ) where Y denotes an
output space. In an unsupervised setting, a collection
of P1, P2, . . . , Pn ∼M (P ) contains some useful informa-
tion about the underlying process M . Unlike in the
standard setting, Pi can only be observed through the
sample xi1,x

i
2, . . . ,x

i
ni from Pi for i = 1, . . . ,n; in other

words, empirical distributions P̂i := (1/n)
∑ni
j=1 δxij

.
Based on the KME, I developed a framework called

distributional risk minimization (DRM) that gener-
alizes the conventional empirical risk minimization
(ERM) to a space of distributions [36, 39]. I showed that
any f ∈H minimizing the regularized risk functional
L(P1, y1,Ex∼P1

[f (x)], . . . , Pn, yn,Ex∼Pn [f (x)])+Ω(‖f ‖H ) ad-
mits a form f =

∑n
i=1αiµPi for some α ∈ R

n [36,
Theorem 1]. It generalizes the well-known representer
theorem [42] to a space of distributions. Based on
this framework, I proposed learning algorithms on
distributions called support measure machine (SMM)
and one-class support measure machine (OCSMM)
[36, 39]. These algorithms also generalize the support
vector machine (SVM) algorithm with extended kernel
functions on probability distributions, e.g., K(P ,Q) =
〈µP ,µQ〉H and K(P ,Q) = exp(−‖µP − µQ‖2H /2σ2). Be-
cause we have no direct access to P1, . . . , Pn, learning
from them involves a two-stage estimation [37].
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Fig. 2: (Left) The kernel mean embedding (KME) P 7→ µP := EX∼P [k(X, ·)]. (Middle) The distributional learning
with KME allows us to reason about the aggregate behaviors that arise from multiple collections of data. (Right)
A comparison between the observational distribution P (Y |X) and interventional distribution P (Y |do(X)) with the
same conditional means, but different higher-order moments, i.e., conditional variances. Ignoring higher-order
effects can lead to unreliable decisions.

My work [43] also laid the foundation for subsequent
works in the out-of-distribution (OOD) generalization.
In [43], my colleagues and I studied the domain gen-
eralization (DG) problem [44]: Given data sets from
multiple domains P1(X,Y ), . . . , Pn(X,Y ) ∼ M (PXY), learn
a predictor f : PX × X → Y that generalizes well to
any previously unseen domains P∗(X).3 In health care,
domains, i.e., P1, . . . , Pn, may correspond to different
patients from which data were collected and the goal
is to learn a predictive diagnosis model that will work
well on data collected from the new patients, i.e., P∗.
To achieve this goal, I proposed a simple algorithm
called domain-invariant component analysis (DICA)
to extracts feature representation φ(X) that renders the
marginals invariant, i.e., P1(φ(X)) ≈ · · · ≈ Pn(φ(X)), while
preserving functional relationship between X and Y .
The invariance property was achieved via the notion
of a distributional variance VH (M ) which quantifies
the dispersion of the meta-distribution M based on
the empirical mean embeddings µ̂P1

, . . . , µ̂Pn [43, Sec.
2.1]. Our learning-theoretic analysis showed that this
representation leads to improved out-of-distribution
generalization bound [43, Theorem 5]. To allow for
better generalization, my intern and I later combined
this idea with deep neural network and applied it to
a few-shot learning problem [20]. A novel task repre-
sentation called model-aware task embedding (MATE)
incorporates not only the data distributions of different
tasks, but also the complexity of the tasks.

C. Real-world Applications

Using the aforementioned ideas, I have contributed
a number of real-world applications, especially in sci-
ence, health care, and causality (see [6] for a review).

Science. Applications of machine learning to scien-
tific data such as micro-array and astronomical data
can be challenging due to a measurement error. To
account for this uncertainty, I suggested to represent
each data point as a distribution and adopted our

3This problem was first studied in [44], but the term “domain
generalization (DG)” was coined for the first time in our paper [43].

distributional learning framework [36, 39]. Secondly,
learning aggregate information from distributions of
high-throughput data may reveal interesting phenom-
ena that would have been impossible to discover from
individual data. In [39], for example, I applied the OC-
SMM algorithm to detect “anomalous group” of galax-
ies from the Sloan Digital Sky Survey (SDSS) dataset
and to identify “anomalous collision events” in high-
energy particle physics experiments that deviate from
known Standard Model, e.g., Higgs boson. Thirdly,
data in complex dynamical systems like molecular
dynamics, fluid dynamics, atmospheric sciences, and
control theory can be described by “transfer operators”
such as the Perron-Frobenius or Koopman operator.
In molecular dynamics, the eigenfunctions of these
operators can help detect meta-stable sets, to project
the dynamics onto the dominant slow processes, or to
separate superimposed signals. Based on the CME, my
colleagues and I proposed in [45] a kernel transfer
operator (KTO) which extends transfer operator the-
ory in complex dynamical systems to RKHS. Lastly,
together with my colleagues, we proposed in [46] a
quantum mean embedding (QME) to represent a pure
quantum state of a system that is described by an
infinite dimensional Hilbert space.

Health care. Medical data such as electronic health
record (EHR) are often collected from multiple het-
erogeneous sources (patients, cohorts, or hospitals)
with different data distributions. In [43], I applied
our domain generalization (DG) algorithms to gating
of graft-versus-host disease (GvHD) data and to
Parkinson’s telemonitoring data. The GvHD dataset
consists of weekly peripheral blood samples obtained
from 31 patients following allogenic blood and mar-
row transplant. The goal of gating is to identify
CD3+CD4+CD8β+ cells, which were found to have a
high correlation with the development of GvHD. In
the latter, the aim is to predict the clinician’s motor
and total UPDRS scoring of Parkinson’s disease symp-
toms from 16 voice measures. There are around 200
recordings per patient. Our algorithms could improve



generalization of the learned diagnosis to new patients
[43, Sec. 3.2 & 3.3].

Causality. Conceptually, causal inference involves
reasoning about the entire distributions rather than
the individual data. In this light, my colleagues and
I casted a bivariate causal inference, i.e., deciding if
X causes Y or vice versa, as a classification problem
on the joint distribution P (X,Y ) [15]. Given a train-
ing sample {(P̂i(X,Y ), li)}ni=1 where P̂i(X,Y ) denotes an
empirical distribution and l ∈ {−1,+1} is a ground-truth
label indicating whether X causes Y , we learned a clas-
sifier that would allow us to predict the causal direction
on the unseen datasets. Our approach outperforms
classical causal inference algorithms, demonstrating
the benefit of machine learning in causal inference
[15, Sec. 5]. In [14], we showed how to use KME
to model functional relationship Z = f (X,Y ), e.g., a
structural equation model (SEM) Y = f (X)+ε, also with
applications in bivariate causal inference.

II. Causation and Decision Making

The observational distributions P (Y |X) and P (X)
alone do not provide a full picture of causation which
lies at the heart of decision making. Inspired by con-
cerns over the societal impact of machine learning, my
current research focuses on a synergy between machine
learning and economics [47, 48]. I am developing algo-
rithms to solve challenging economic problems, while
bringing the economic perspective into the design of
new learning algorithms.

A. Distributional Policy Intervention

In economics, a prime objective is to predict the effect
of a policy intervention or a counterfactual change in
economic conditions on some outcome variables. That
is, we are concerned with an interventional distribu-
tion P (Y |do(X)) which describes how the distribution
of Y would change (or would have changed) as a
result of some intervention on X.4 In other words, it
encodes the causal effect of X on Y . Since P (Y |do(X)) ,
P (Y |X) in general, one needs further restrictions on
the data generating process (DGP) which mostly come
in the form of causal graphs [50, 51], exchangeability
conditions [52], or completeness conditions [53, 54].

The policy intervention generally aims to understand
non-trivial effect of change in distribution P (X) of
relevant covariates, e.g., pregnant women who smoke,
on the entire outcome distribution P (Y ), e.g., the birth
weight of the babies [55, Sec. 5.2]. However, most of
existing works in the literature focus on mean effects
such as average treatment effect (ATE) and conditional
average treatment effect (CATE), which do not inform
changes in higher-order moments such as the variance.
In [16], my colleagues and I proposed a counterfactual

4The notation do(X) denotes a mathematical operator that simu-
lates physical interventions on X [49, Sec. 3.2.1].
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Fig. 3: Causal graphs depicting an instrumental vari-
able Z (left) and proxy variables (Z,W ) (right). The
causal effect of X on Y is confounded by a hidden
variable U . By utilizing Z or (Z,W ), one can mitigate
the effect of U .

mean embedding (CME) µY 〈1|0〉 as a Hilbert space
representation of the counterfactual distribution [56]:

PY 〈1|0〉(y) :=
∫
PY1 |X1

(y |x)dPX0
(x) (1)

The counterfactual PY 〈1|0〉 represents the outcome of
hypothetical change which by definition is not ob-
servable, e.g., the birth weight of the babies had the
mothers abstained from smoking. Without any para-
metric assumptions, we proposed consistent estimators
µ̂Y 〈1|0〉 for the embedding µY 〈1|0〉 based on samples
from the observable distributions PX0

and PY1X1
. We

established consistency and convergence rate of µ̂Y 〈1|0〉
which requires weaker assumptions than the previous
work [16, Sec. 4]. One of the important applications of
our work is offline policy evaluation [16, Section 6],
which is relevant to a program evaluation in economics.
In [17], my colleagues and I extended this idea to
conditional distributions by proposing the conditional
distributional treatment effect (CoDiTE), which, in
contrast to the more common conditional average treat-
ment effect (CATE), is designed to encode a treatment’s
distributional aspects and heterogeneity beyond the
mean. We applied CoDiTE to LaLonde’s well-known
National Supported Work (NSW) dataset [57] to model
the distribution of income. Since income distributions
are known to be skewed, CoDiTE can capture the
treatment effect better than CATE [17, Sec. 6.2]. Fig.
2 highlights the importance of distributional effects.

B. Nonparametric Instrumental Variable (NPIV)

A major obstacle to the policy evaluation is an endo-
geneity that arises from hidden confounders. Suppose
that X and Y denote treatment and outcome variables,
e.g., education and level of income, whose functional
relationship can be described by Y = f (X) + ε, E[ε] = 0.
The presence of unobserved confounders, e.g., socio-
economic status, prevents us from learning f with the
standard nonparametric regression because E[ε |X] , 0,
i.e., E[Y |do(X)] , E[Y |X]. The idea of an instrumental
variable (IV) regression is to leverage an instrument
Z that (i) induces a variation in X (relevance), (ii) af-
fects Y only through X (exclusion restriction), (iii) is
independent of the error term ε (exchangeability). Fig.
3 provides an illustration. In this case, f satisfies the



Fredholm integral equation of the first kind:

E[Y |Z] =
∫
X
f (x)dP (x|Z). (2)

Solving (2) for f is an ill-posed inverse problem [53,
58, 59]. Existing methods in machine learning can be
categorized either as a two-stage approach [60, 61] or
GMM-based approach [62, 63]. In [64], I showed that
learning f via (2) can be reformulated as a two-player
game with a convex-concave utility function, i.e.,

min
f ∈F

max
u∈U

E[(Y − f (X))u(Y ,Z)]− 1
2
E[u2(Y ,Z)]. (3)

When F and U are both RKHSes, the global equi-
librium can be obtained in closed-form [64, Sec.
4]. Furthermore, this work reveals a close connection
between the two-stage and GMM-based approaches as
a dual problem, as pointed out in [65, Appendix F]
and our work [18, Sec. 3.3]. This reformulation also
elucidates the kind of problems for which a game-
theoretic perspective as a search for Nash equilibrium
can lead to simpler algorithms than the standard ones
that solve (2) directly.

The IV has revolutionized economics [66] and epi-
demiology [67, 68], but the statistical tools employed
for estimation are fairly rudimentary. Hence, I envision
not only the development of novel algorithms for this
task, but also a widespread use of IV in machine
learning applications such as offline RL [69, 70].

C. Maximum Moment Restriction
Alternatively, the IV regression problem can be

solved via a moment restriction: E[Y −f (X;θ) |z] = 0 for
almost all z ∈ Z [62, 63, 71]. In fact, most econometric
models are often specified in terms of a conditional
moment restriction (CMR): for correctly specified mod-
els, the conditional mean of certain functions of data is
almost surely equal to zero [72, 73]. For the true param-
eter θ0 ∈Θ, the CMR is expressed mathematically as

E[ϕ(X,θ0) |Z] = 0, PZ − a.s. (4)

where (X,Z) is a data vector and ϕ(·, ·) is a vector of
problem-dependent generalized residual function.

The major challenge here is that (4) implies an
infinite number of unconditional moment restric-
tion (UMR): E[ϕ(X,θ0)>h(Z)] = 0 for any measurable
vector-valued function h. The function h is often re-
ferred to as an instrument whose optimal choice re-
mains an open problem in econometrics. In [13], I
proposed a maximum moment restriction (MMR):

MMR2(H,θ) := sup
f ∈H,‖f ‖≤1

∣∣∣∣EXZ

[
ϕ(X,θ)>h(Z)

]∣∣∣∣2
= E[ϕ(X,θ)>K(Z,Z ′)ϕ(X ′ ,θ)] (5)

where H is a vector-valued RKHS (vv-RKHS) with the
kernel K [74, 75]. In words, the original CMR (4) is
transformed to a maximum of the interaction between

Rational Agents

BP

Datasets Machine Learning

Anticipation
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Fig. 4: Learning as a robust mechanism design: When
data come from self-interest agents (individuals, in-
stitutions, or even countries) that can anticipate the
outcome of data-driven models, the deployment of
static models can be sub-optimal. In this setting, the
problem is akin to designing a game to be played by
the data against the model.

the generalized residual function and functions of the
conditioning variables that belong to a unit ball of the
vv-RKHS. We showed that, if the kernel K satisfies cer-
tain properties, not only MMR(H ,θ0) = 0 if and only
if the original CMR (4) is fulfilled, but there also exists
a closed-form, easy-to-use solution (5). My colleagues
and I have applied this framework successfully to the
problems of conditional moment (CM) test [13], IV
regression [71], and proximal causal learning [18]; see
Fig. 3. Therefore, modern kernel methods clearly have
potentials to help solve many problems in economics.

III. Model Regulation and Mechanism Design

Machine learning will soon enable accurate causal
reasoning and reliable decision making. However, the
deployment of learned models can affect the real world
and change the environments in which they operate.

The first challenge is a feedback loop in the data
collection process, as illustrated in Fig. 1. That is,
historical data are used to build models which are then
deployed to collect more data. In loan decisions, for
example, a bank may decide whether or not to offer
a loan based on models of the credit default. These
decisions generate more data that are subsequently
used to improve the models. In [76], my colleagues
and I analyzed consequential decision making using
imperfect predictive models, which are learned from
data gathered by potentially biased historical decisions.
We articulated that when starting with a non-optimal
deterministic policy, this approach fails to optimize
utility for sequential decisions. To avoid this failure
mode while respecting a common fairness constraint,
we suggested to directly learn the decisions with ex-
ploring policies [76, Sec. 3.2]. Our results highlight
the need of regulation that governs the design and
applications of predictive models in the real world.

The second challenge is that the deployment may
introduce incentives for individuals to change their



behaviour. Hence, the models can become sub-optimal
if observed data are manipulable, e.g., in heterogeneous
pricing, individualized credit offer, and target social
program, as illustrated in Fig. 4. In these situations,
we must design a mechanism with which the models
will be governed to reach a desirable long-term social
welfare, for example, by eliciting the right incentives
for people [77]. This question leads to a growing inter-
est in strategic classification [78–80] and performative
prediction [81] among others. Compared to immediate
impacts of machine learning such as unfairness and al-
gorithmic biases, long-term impacts are often neglected
as they are more difficult to foresee.

Hence, my vision for future research in machine
learning lies in the challenges that arise from inter-
actions between machine learning systems and real-
world environments. In particular, to create models
that generalize better to the real world it is important to
understand how to incorporate the information about
the data collection process and the effects of the de-
ployment in complex environments into the design of
learning algorithms. Critical challenges include market
equilibrium, temporal data, heterogeneity, delayed ef-
fect, endogeneity, and strategic response. To fulfil this
vision, we need the synergy between machine learning,
economics, game theory, and mechanism design.
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